

2D Multilink

Introduction

Single Link System

Two Links System

Simulation Results

Conclusions

Modeling and Control of a Multi-link Convertible Drone for Manipulation Operations

J. Castillo^{1,2}, J. Escareno^{1,3}, I. Boussaada^{1,2}, H. Mounier² and S. Niculescu²

¹Institut Polytechnique des Scienes Avancèes, LS2A ²Centrale Supelec, L2S ³Limoges University, XLIM Laboratory

Journée Technique ²RM: Démarche de conception mécatronique de drones avec systèmes de préhension et main dextres.

2D Multilink

Introduction

Single Link System

Two Links System

Introduction Related Work

2D Multilink

Introduction

Single Link System

Two Links System

Simulation Results

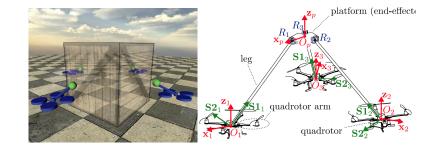
Conclusions

(a)

Figure: (a) Single propeller kinematic chain, (b) DRAGAN Robot

Introduction Related Work

2D Multilink


Introduction

Single Link System

Two Links System

Simulation Results

Conclusions

(a) (b) Figure: (a) 4 UAVs transportation, (b) Flying parallel robot

2D Multilink

Introduction

Single Link System

Two Links System

Simulation Results

Conclusions

2 Single Link System

3 Two Links System

Simulation Results

2D Multilink

Introduction

Single Link System

Two Links System

Simulation Results

Conclusions

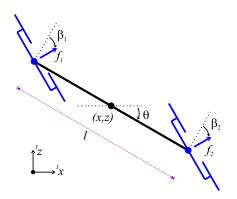


Figure: Single link system 2D representation

Where $m_1 = m_2 = m_0$ is the mass of the vehicles, m_a the mass of the link, $l_1 = l_2 = l_0$ the moment of inertial of the quadrotors and, finally, l_a that of the link.

2D Multilink

August 30, 2018 6/22

Single Link System

2D Multilink

Introduction

Single Link System

Two Links System

with

Simulation Results

Conclusions

Let the vector of generalized coordinates be $q_{l1} = [x \ z \ \theta]^T$, by applying the Euler Lagrange formalism, the dynamics of the system can be expressed as:

$$\mathbf{M}_{l1}\ddot{q}_{l1} + \mathbf{G}_{l1} = \tau_{l1}$$

$$\mathbf{M}_{l1} = \begin{bmatrix} 2m_0 + m_a & 0 & 0\\ 0 & 2m_0 + m_a & 0\\ 0 & 0 & \frac{m_0l^2}{2} + l_a \end{bmatrix} \quad \mathbf{G}_{l1} = \begin{bmatrix} 0\\ (2m_0 + m_a)g\\ 0 \end{bmatrix}$$
$$\tau_{l1} = \begin{bmatrix} S_{\theta+\beta_1}f_1 + S_{\theta+\beta_2}f_2\\ C_{\theta+\beta_1}f_1 + C_{\theta+\beta_2}f_2\\ \frac{l}{2}(C_{\beta_1}f_1 - C_{\beta_2}f_2) \end{bmatrix}$$

The quadrotor's rotational dynamics are described by $I_0\ddot{\theta}_i = \tau_i$ where i = 1, 2.

Single Link System

2D Multilink

Single Link System For control purposes, we consider $\beta_1 = \beta_2 = \beta$ which allows us to establish the relations

$$f_1 + f_2 = \sqrt{u_x^2 + u_z^2}$$
$$\theta + \beta = \tan^{-1}\left(\frac{u_x}{u_z}\right)$$

Moreover, to determinate each force, we find

$$\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \sqrt{u_x^2 + u_z^2} \\ (2u_\theta) / (IC_\beta) \end{bmatrix}$$

where u_x , u_z and u_θ are the control inputs given by PD controllers in the form:

$$u = K_{p}e_{p} + K_{v}e_{v} + G_{d}$$

2D Multilink

August 30, 2018 8/22

2D Multilink

Introduction

Single Link System

Two Links System

Simulation Results

Conclusions

Single Link System

3 Two Links System

Simulation Results

Two Links system System Description

2D Multilink

Introduction

Single Link System

Two Links System

Simulation Results

Conclusions

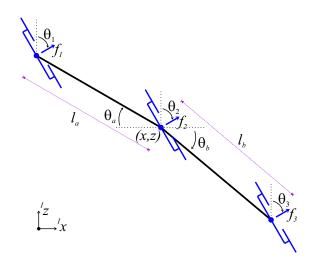


Figure: Two links system 2D representation

2D Multilink

Two Links System System Description and Modeling

As in the previous case we consider:

Introduction

Single Link System

Two Links System

Simulation Results

Conclusions

 m_0 the mass of the vehicles

- *m*_a the mass of the links
- I_0 the moment of inertia of the quadrotors
- *I_a* the moment of inertia of the links
 - the length of the links

To apply the Euler Lagrange formalism, let $q_{l2} = [x \ z \ \theta_a \ \theta_b]^T$ be the vector of generalized coordinates which leads to the equation:

$${\sf M}_{l2}\ddot{q}_{l2}+{\sf C}_{l2}\dot{q}_{l2}+{\sf G}_{l2}= au_{l2}$$

Two Links System

2D Multilink

Where:

Introduction

Single Link System

Two Links System

Simulation Results

Conclusions

$$\begin{split} \mathbf{M}_{l2} &= \begin{bmatrix} 3m_0 + 2m_a & 0 & l(m_0 + 0.5m_a) S_{\theta_a} & -l(m_0 + 0.5m_a) S_{\theta_b} \\ & 3m_0 + 2m_a & l(m_0 + 0.5m_a) C_{\theta_a} & -l(m_0 + 0.5m_a) C_{\theta_b} \\ & m_0 l^2 + \frac{m_a l^2}{4} + l_a & 0 \\ \end{bmatrix} \\ \mathbf{C}_{l2} \dot{q}_{l2} &= \begin{bmatrix} l(m_0 + 0.5m_a) \left(C_{\theta_a} \dot{\theta}_a^2 - C_{\theta_b} \dot{\theta}_b^2 \right) \\ & -l(m_0 + 0.5m_a) \left(S_{\theta_a} \dot{\theta}_a^2 - S_{\theta_b} \dot{\theta}_b^2 \right) \\ & 0 \end{bmatrix} \\ \mathbf{G}_{l2} &= \begin{bmatrix} 0 \\ (3m_0 + 2m_a) g \\ gl(m_0 + 0.5m_a) C_{\theta_a} \\ -gl(m_0 + 0.5m_a) C_{\theta_b} \end{bmatrix} ; \quad \tau_{l2} = \begin{bmatrix} S_{\theta_1} f_1 + S_{\theta_2} f_2 + S_{\theta_3} f_3 \\ C_{\theta_1} f_1 + C_{\theta_2} f_2 + C_{\theta_3} f_3 \\ \frac{1}{2} \left(C_{\theta_a - \theta_1} f_1 - C_{\theta_a - \theta_2} f_2 \right) \\ \frac{1}{2} \left(C_{\theta_b - \theta_1} f_2 - C_{\theta_b - \theta_2} f_3 \right) \end{bmatrix} \end{split}$$

Two Links System

2D Multilink

Two Links System

For control purposes, we consider $\theta_1 = \theta_2 = \theta_3 = \gamma$ which allows us to establish the relations

$$f_1 + f_2 + f_3 = \sqrt{u_x^2 + u_z^2}$$
$$\gamma = \tan^{-1}\left(\frac{u_x}{u_z}\right)$$

Moreover, to determinate each force, we find

$$\begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & -2 \end{bmatrix} \begin{bmatrix} \sqrt{u_x^2 + u_z^2} \\ (2u_{\theta_a}) / (IC_{\theta_a - \gamma}) \\ (2u_{\theta_b}) / (IC_{\theta_b - \gamma}) \end{bmatrix}$$

where u_x , u_z , u_{θ_a} and u_{θ_b} are the control inputs given by PD controllers previously described.

2D Multilink

2D Multilink

Introduction

Single Link System

Two Links System

Simulation Results

Conclusions

Single Link System

Two Links System

Simulation Results

5 Conclusions

Simulation Results Single Link System

2D Multilink

Single Link System

Two Links System

Simulation Results

Conclusions

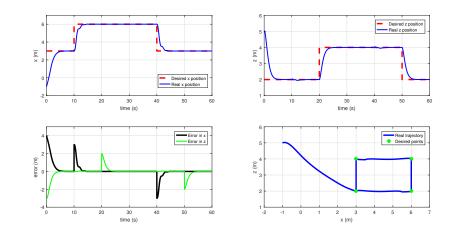


Figure: Translational behavior of the Single Link System

Simulation Results Single Link System

2D Multilink

Single Link System

Two Links System

Simulation Results

Conclusions

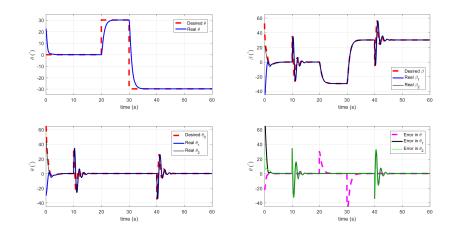


Figure: Rotational behavior of the Single Link System

Simulation Results Two Links System

2D Multilink

Single Link System

Two Links System

Simulation Results

Conclusions

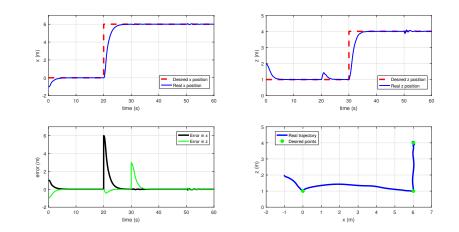


Figure: Translational behavior of the Two Links System

Simulation Results Two Link System

2D Multilink

- Introduction
- Single Link System
- **Two Links System**
- Simulation Results
- Conclusions

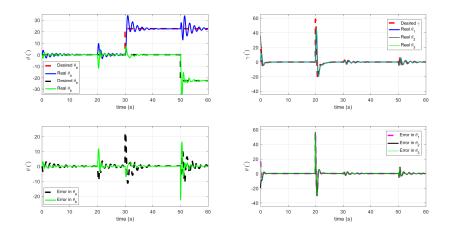


Figure: Rotational behavior of the Two Links System

2D Multilink

Introduction

Single Link System

Two Links System

Simulation Results

Conclusions

Introduction

Single Link System

Two Links System

Simulation Results

Conclutions Future Work

2D Multilink

Introduction

- Single Link System
- Two Links System
- Simulation Results
- Conclusions

- · Study of systems with more links in 2D
- 3D Modeling
- Implementation of a Convertible UAV
- Formation stability control
- Trajectory tracking control
- · Implementation of Time-delay systems control theory

Conclutions

2D Multilink

Introduction

Single Link System

Two Links System

Simulation Results

Conclusions

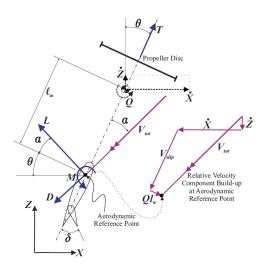


Figure: Proposed convertible aircraft

Thank You