Conception et commande d'un robot parallèle volant Journée technique "drones et manipulation"

Damien Six Abdelhamid Chriette Sébastien Briot Philippe Martinet

Laboratoire des Sciences du Numérique de Nantes

28/08/2018

Content

Introduction

Kinematics and dynamics

Control law

Two drones prototype

Conclusion and future work

Aerial robotics

Flying UAV + Robotic device

New generation of aerial robots

Control law

Two drones prototype

Several Approaches

- UAV + 1 DoF actuated mechanism
- UAV + serial or parallel robot
- Several UAVs + cable load transportation

Two drones prototype

Several Approaches

• UAV + 1 DoF actuated mechanism

 \rightarrow Limited in payload and manipulation abilities

- UAV + serial or parallel robot
- Several UAVs + cable load transportation

Figure : Quadrotor + 1 DoF manipulator (University of Pennsylvania) Control lav

Two drones prototype

Several Approaches

- UAV + 1 DoF actuated mechanism
- UAV + serial or parallel robot

 (+) Better manipulation ability
 (-) Autonomy/payload additional embedded motors Stabilization while operating
- Several UAVs + cable load transportation

Figure : UAV + robotic arm manipulator (LAAS-CNRS)

Control lav

Two drones prototype

Several Approaches

- UAV + 1 DoF actuated mechanism
- UAV + serial or parallel robot
- Several UAVs + cable load transportation

 (+) Large objects transportation
 (-) Requires operator
 Cannot apply pushing forces
 Operation under the drones only

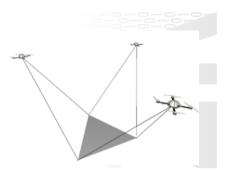


Figure : FlyCrane project (LAAS-CNRS)

A new concept in aerial robotics

Flying robot inspired from rigid parallel manipulators

Several UAVs + Passive kinematic chain

A new concept in aerial robotics

Flying robot inspired from rigid parallel manipulators

Several UAVs + Passive kinematic chain

- Reconfiguration: Tasks under and over the drones
- Efforts are spread over several drones
- No additional embedded motors
- Effector away from the drones
- Large choice of leg topology
- Advantages of the decoupling properties?

Content

Introduction

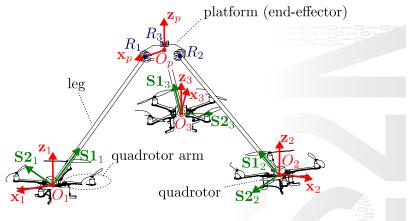
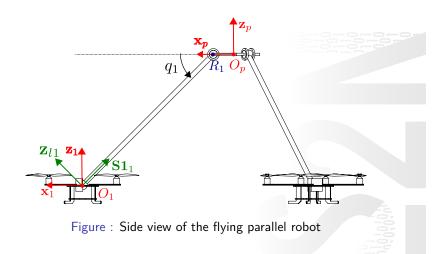
Kinematics and dynamics

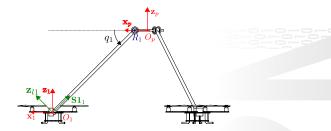
Control law

Two drones prototype

Conclusion and future work

Study case


Figure : A flying parallel robot with three quadrotors

Study case

Two drones prototype

Kinematic parameters

Generalized coordinates q:

- x_p, y_p, z_p, φ_p, θ_p, ψ_p position and orientation coordinates of the moving platform;
- q_1, q_2, q_3 the relative angle between the platform plane and leg
- $\phi_1, \theta_1, \psi_1, \phi_2, \theta_2, \psi_2, \phi_3, \theta_3, \psi_3$ the orientation coordinates of the drones

Robot dynamic model

Input/Output analysis

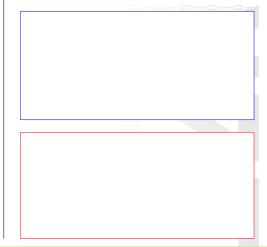
- Generalized coordinates q is a 18-dimensional vector
- Three 4-dimensional input wrenches

18 d.o.f. for 12 independant inputs

Under-actuation as for a classic quadrotor \Rightarrow similar decoupling?

Splitting the dynamic model

Quadrotor dynamic model


Translation coordinates $\boldsymbol{\xi}$ controlled by thrust \mathbf{t}

$$\mathbf{R}(\eta)\mathbf{t} = m\ddot{\boldsymbol{\xi}} - m\mathbf{g}$$

Angular velocities ω controlled by torques au

$$oldsymbol{ au} = oldsymbol{\Sigma} \dot{oldsymbol{\omega}} + oldsymbol{\omega} imes oldsymbol{\Sigma} oldsymbol{\omega}$$

Flying robot dynamic model

Splitting the dynamic model

Quadrotor dynamic model

Translation coordinates $\boldsymbol{\xi}$ controlled by thrust \mathbf{t}

$$\mathbf{R}(\eta)\mathbf{t} = m\ddot{\boldsymbol{\xi}} - m\mathbf{g}$$

Angular velocities ω controlled by torques au

$$oldsymbol{ au} = oldsymbol{\Sigma} \dot{oldsymbol{\omega}} + oldsymbol{\omega} imes oldsymbol{\Sigma} oldsymbol{\omega}$$

Flying robot dynamic model

Passive chain coordinates \mathbf{q}_p controlled by thrust \mathbf{t}

$$\mathsf{M}\ddot{\mathsf{q}}_{p} + \mathsf{c} = \mathsf{J}^{\mathsf{T}}\mathsf{R}_{t}\mathsf{t}$$

Splitting the dynamic model

Quadrotor dynamic model

Translation coordinates $\boldsymbol{\xi}$ controlled by thrust \mathbf{t}

$$\mathbf{R}(\eta)\mathbf{t} = m\ddot{\boldsymbol{\xi}} - m\mathbf{g}$$

Angular velocities ω controlled by torques au

 $oldsymbol{ au} = oldsymbol{\Sigma} \dot{oldsymbol{\omega}} + oldsymbol{\omega} imes oldsymbol{\Sigma} oldsymbol{\omega}$

Flying robot dynamic model

Passive chain coordinates \mathbf{q}_p controlled by thrust \mathbf{t}

$$\mathsf{M}\ddot{\mathsf{q}}_{\rho} + \mathsf{c} = \mathsf{J}^{\mathsf{T}}\mathsf{R}_{t}\mathsf{t}$$

Attitude coordinates ω_i controlled by torgues τ_i

$$oldsymbol{ au}_i = oldsymbol{\Sigma}_i \dot{oldsymbol{\omega}}_i + oldsymbol{\omega}_i imes oldsymbol{\Sigma}_i oldsymbol{\omega}_i$$

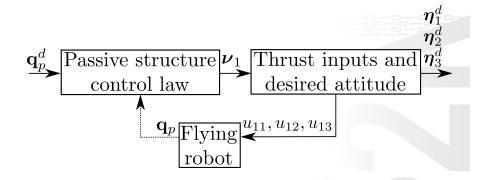
Content

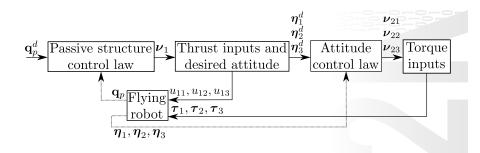
Introduction

Kinematics and dynamics

Control law

Two drones prototype


Conclusion and future work



Passive chain control law

Computed torque control law for the passive chain

Attitude control law

Sliding mode control law for attitude

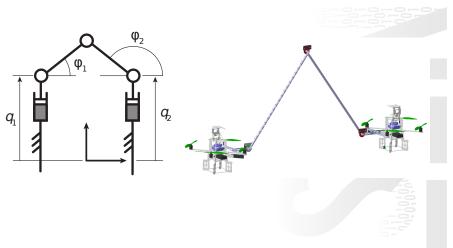
Content

Introduction

Kinematics and dynamics

Control law

Two drones prototype


Conclusion and future work

Prototype presentation

Control law

Two drones prototype

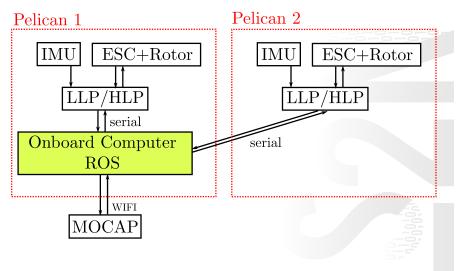
Available equipment

2 PELICAN from ASCTEC/INTEL

QUALISYS MOCAP system

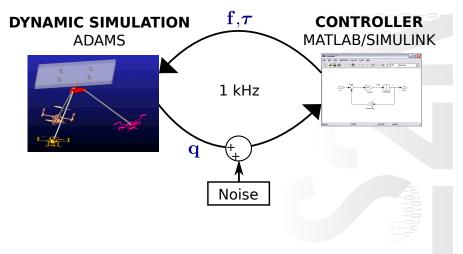
- 8 cameras
- Position capture at 250 Hz





Controller

Equipement and communication


Trajectory tracking: "Up" configuration

"Down" configuration

Simulator

Singularity crossing

- Specific for each passive structure \Rightarrow Kinematic study
- One uncontrolled DoF when crossing the singularity

• Degeneracy of the dynamic model \Rightarrow Specific controller

Control law

Two drones prototype

Singularity crossing

Task example

Content

Introduction

Kinematics and dynamics

Control law

Two drones prototype

Conclusion and future work

Main contributions

- New concept of a flying structure with collaborative quadrotors inspired from rigid parallel robot.
- Expression and properties of its dynamic model. Design of a stabilizing control law.
- Design and experimentation with 2 drones as a proof of concept.
- Design of a 3 drones flying parallel robot that allows control of the **6 DoFs** of a platform.

Potential future work

- Experimental prototype with three quadrotors
- Reconfiguration (singularity crossing) in experimental conditions
- Towards manipulation: use legs to actuate a gripper or add a tool to the platform.

Thank you for your attention

