

Human-Autonomy Teaming for drone control and supervision — Methodology and use cases definition

Stéphane ZIEBA

www.thalesgroup.com Journée Technique Mesures Physiologiques et Études U tilis a teurs **S e p t e m b e r , 1 8 t h 2 0 2 4**

Table of contents

01 ////////////////

Introduction

mmmmm

02

Use case for collaborative combat : COHOMA challenge

03

mmmmm

Use case for searchand-rescue mission : SEISMEC project

04 *mmmmmi*

Human-Autonomy Teaming and global roadmap with PRODEC

Introduction

. $\begin{array}{cccccccccccccc} \bullet & \bullet \end{array}$ **AAAAA** \sim \sim \sim \sim

> \mathbf{A} \mathbf{A} \mathbf{A} $A = A = A$ λ λ λ \sim \sim \sim

> > **A** A

 \mathbf{A} . $A = A$

A $A = A$

 \mathcal{N} \mathbf{A} \mathbf{A} \sim \sim

 \mathbf{A} . $A = A$ \sim $A = A$ \sim \sim \sim \sim \sim \sim A A A \sim \sim \sim \sim \sim \sim A A A A

 $\mathbf{A}^{\dagger}=\mathbf{A}^{\dagger}=\mathbf{A}$

 $A = A$

Activities of Vision, Autonomy & Robotics Learning lab Persons & Human/robot Face vehicles interaction**recognition** Collaborative detection robotics & tracking **Artificial Events** detection **Intelligence Robotics** & Multi-& Deep sensor Autonomous fusion Learning **Multi** systems Embedded camera processing **Objects** Indoor / classification outdoor analysis navigation 5 Building a future we can all trust d party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Use case for collaborative combat

Collaborative Combat context

Interest raised by COHOMA (COllaboration HOmme-MAchine) challenge (3rd edition in 2025)

- **Context :** Collaborative combat requires natural and efficient Human-Machine interactions and interfaces and finegrained management of autonomy
- **Objective :** increase decisional autonomy of platforms (UGVs, UAVs) and assess impact on cognitive workload of operators
- **Scenario :** multiple UGVs and UAVs supervised by remote operators have to move in a natural environment and to detect targets simulated by red cubes with QR-codes giving information about the nature of the target

How to deal with autonomy? How to take into account the role of human operators?

SEISMEC

Use case for search-andrescue mission

. . . . \sim \sim \sim \sim

Pilot scenario : search-and-rescue mission

SEISMEC

Human-centred development, deployment and assessment of the effects of technological innovations on people, employees and workers

Image & Video AI analysis for DRI (Detection, Recognition, Identification)

How to design human-centred system with efficient Human-System interactions?

Human - Autonomy Teaming and PRODEC methodology

 \sim \sim \sim \sim

Methodology based on PRODEC method

Boy, G. and Morel, C. 'The Machine as a Partner: Human-machine Teaming Design Using the PRODEC Method'. 1 Jan. 2022 : S15 – S30.

First steps on PRODEC methodology

. <u>.</u> $A \qquad A \qquad A \qquad A \qquad A$ **AAAAA** \sim \sim \sim \sim

> $\mathbf{A}=\mathbf{A}+\mathbf{A}$ \mathbf{A} \mathbf{A} \mathbf{A}

 $A = A$ λ λ λ $\mathbf{A}=\mathbf{A}+\mathbf{A}$

 $A = A$

 $\mathbf{A}^{\dagger}=\mathbf{A}^{\dagger}=\mathbf{A}$ Λ \sim \sim

 \sim \sim \sim

Task analysis

- **Draw a scenario for collaborative combat missions or assistance to first-responders**
- Define involved actors (humans and drones : UGVs, UAVs…) in the scenario and their relations

Modelling processes using BPMN for each identified actor

- \cdot Identify critical decision points
- First view of expected workload and achievable level of autonomy

Gather expertise from end-users with questionnaires and interviews

- Understand activity of first-responders
- **Understand expectations from a system** with AI
- Understand reluctance and limitations and potential trust issues

Physical and cognitive function analysis

PRODEC is based on 4 categories of cognitive functions

- Situation Awareness
- \rightarrow Reasoning
- Action
- Collaboration
- **Associate cognitive function to each task identified in task analysis**
- **Associate KPIs to each task to assess cognitive workload and feasibility of each task based on expected level of autonomy**

Hussein, A., Ghignone, L., Nguyen, T., Salimi, N., Nguyen, H., Wang, M., Abbass, H. A. Characterization of Indicators for Adaptive Human-Swarm Teaming. Frontiers in Robotics and AI, 9, 2022. [https://www.frontiersin.org/articles/10.3389/frobt.2022.745958.](https://www.frontiersin.org/articles/10.3389/frobt.2022.745958)

Activity observation and analysis

- **First drafts of questionnaires to obtain feedback after using the system**
- **Iterative process to correct architecture choices**
- **Identify emergent properties and features**
- Refine Human-Machine Interfaces
- **Identify transitions between modes of autonomy when facing perturbations**
- **Assessment of cognitive workload and situation awareness**
- NASA-TLX, SAGAT

OC-GRP-EN-006
party without the prior written consent of THALES © **2023 THALES. All rights reserved.**

First steps for experimentations and technical demonstrators

Software and hardware assets in the Lab

Expertise based on contributions from multiple collaborative projects

- Intelligent payload for small drones equipped with EO/IR cameras and embedded AI capabilities for video analysis (people and vehicle detection: Yolo, OpenPose…)
- Ground control station for mission planning and monitoring : MAVLink, GIS, Openlayer
- Simultaneous video, drone telemetry and metadata streaming : RTP/RTSP, WebRTC, MAVLink
- Video compression using hardware accelerators on NVidia Tegra X1/X2
- ▸ Drone simulation : PX4 Software In The Loop, ROS + Gazebo
- Immersive AR/VR user interfaces

AR Technical demonstrator

Functionalities and User Interface design to ensure Situation Awareness on the field

AR heads-up display for drone direct control

- **Highlight drone position for enhanced perception and easier interaction**
- **Drag and drop drone visualization to new position**
- **Command sent to the drone in real-time**

AR heads-up display for drone control using 3D map

- **Interactive 3D map displayed to the user**
- **Position on the map updated in real-time**
- **Command sent to the drone in real-time**

Conclusions and perspectives

Conclusions and perspectives

Address Human-Autonomy Teaming in dynamic, complex and cooperative systems

Instantiante methodology to model use cases and scenarios of missions involving operators with heterogeneous robotic platforms

Choice of PRODEC : methodology centred on human-systems integration, cognitive modelling and experimentations

Current implementation in different contexts : collaborative combat and search-and-rescue missions

,,,,,,,,,,,,,,,,

Thank you for your attention

Stéphane ZIEBA

Research Engineer - THERESIS

+33 (0)1 73 23 08 02

stephane.zieba@thalesgroup.com